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Word count: 1385 34 

Chronic lymphocytic leukemia (CLL) is characterized by a clonal expansion of mature 35 

CD19
+
CD5

+
 B cells, which are highly dependent on microenvironmental cues for their survival

1
.  36 

This common adult leukemia is preceded by a precursor phase termed monoclonal B-cell 37 

lymphocytosis (MBL)
2,3

 that has been characterized as indistinguishable from CLL at the 38 

genetic, transcriptomic and epigenomic level
4-6

. However, how leukemia cells co-evolve with 39 

immune cells in their circulating microenvironment during the onset of MBL and upon 40 

progression to CLL remains incompletely characterized
7
. 41 

 42 

Recently, single cell transcriptome sequencing approaches (scRNA-seq) have transformed our 43 

ability to gain a comprehensive evaluation of the spectrum of immune cells within the tumor 44 

microenvironment and of their potential crosstalk with cancer cells
8-14

. Herein, we applied 45 

scRNA-seq to broadly characterize circulating immune cells co-existing with leukemic cells 46 
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during natural CLL progression. Although we acknowledge the critical role of bone marrow and 47 

lymph nodes microenvironment on CLL cells, the lack of feasibility for procuring serial 48 

specimens from these tissue compartments led us to focus our study on circulating immune cells. 49 

We therefore collected serial peripheral blood mononuclear cell (PBMC) samples from 3 50 

individuals with high count MBL who did not progress to CLL after a median follow-up of 7.0 51 

years and 7 patients with CLL, whose genetic characterization of CD19
+
CD5

+
 cells over time by 52 

whole-exome sequencing (WES), has been previously reported 
15 

(Figure 1A). For all patients, 53 

we processed paired samples: the first time point (T1) was collected at a median of 4.96 years 54 

(range: 2.44-5.46) from MBL diagnosis or 2.54 years (range: 0.5-4.2) from CLL diagnosis; while 55 

the second time point (T2) was collected at a median of 2.97 years (range: 2.01-2.99) from T1 56 

for the MBL patients and 4.75 years (range: 1.3-10.6) for the CLL patients. T2 samples for CLL 57 

patients were collected at a median of 0.2 years (range: 0-5.9) before first treatment (Suppl 58 

Table 1).  59 

 60 

Non-CD19
+
CD5

+ 
cells were isolated by fluorescence-activated cell sorting and samples from 61 

each patient were processed on the same day to minimize batch effect. Cell suspensions were 62 

loaded on a GemCode Single-Cell Instrument (10x Genomics) and libraries were prepared as 63 

previously described
16 

(Suppl Methods). Analysis was conducted using Seurat V4.0.0 selecting 64 

cells with gene count between 500 and 3,000 and less than 10% mitochondrial reads. Using the 65 

trimmed dataset, we isolated the non-tumor population and assigned immune cell types by 66 

performing multimodal reference mapping using a CITE-seq reference of 162,000 PBMCs 67 

measured with 228 antibodies
17

. B cells were excluded due to potential CLL contamination. 68 

After quality control, we obtained 67,333 single cell transcriptomes (median number of cells per 69 

https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
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sample: 3711, range 491-6633 cells) (Figure 1B, Suppl Table 1). For each sample, we evaluated 70 

the potential for processing and batch artefacts between samples and cohorts, and we selected 71 

cohorts with similar ‘cold-shock signature’
18

 for comparison (Suppl Figure 1A). In total, we 72 

identified 16 clusters across 3 distinct lineages: T cells, NK cells and myeloid cells (Figure 1B, 73 

top UMAP). The distribution of immune cell types from MBL and CLL samples and across 74 

patients appeared to be balanced across the cell clusters (Figure 1B, bottom UMAP; Suppl 75 

Figure 1B). Analysis of the proportions of immune cell types, including various T cell subsets, 76 

between MBL and CLL samples revealed no differences, even across time points (T1 vs T2) 77 

(Figure 1C-D; Suppl Table 2a).  78 

 79 

To confirm the absence of major differences in immune cell proportions between MBL and CLL, 80 

we performed scRNAseq on PBMCs collected from a separate cohort of 4 high count MBL 81 

patients that progressed to CLL (MBL-CLL1-4); the median time from MBL (T1) to CLL 82 

diagnosis was 2.68 years (range, 0.7 – 4.6) and from CLL diagnosis to T2 was 0.6 years (range, 0 83 

– 1.8). We also evaluated 2 age-matched healthy donors (HDs, median number of cells per 84 

sample: 4400, range 2630-7596 cells) using the same approach described above (Figure 2A, B). 85 

Again, we observed an absence of major compositional or phenotypic changes in immune cell 86 

populations in the transition from MBL to CLL, while marked differences in the composition in 87 

immune cell types were evident in CLL compared to HDs. In particular, the proportion of CD8
+
 88 

T cells was higher in CLL compared to HD (33% vs 8%, p=0.037), with a corresponding 89 

decrease in CD4
+
 T cells (Figure 2C, left panel; Suppl Table 2b). The CD4

+
 and CD8

+
 T cell 90 

subtypes that contributed to these differences were naïve, central memory (TCM) CD4
+
 and 91 

terminal effector memory (TEM) CD8
+
 cells (Figure 2C, right panel). A higher number of 92 
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differentially expressed genes (DESeq adjusted p-value <0.05 and |avg_log2FC| >0.6) was 93 

observed between HD and MBL/CLL patients than between MBL to CLL at the time of 94 

progression (MBL-CLL 1 and 2, Figure 2D; Suppl Table 3). More differences in gene 95 

expression were seen in those paired samples where CLL was sampled at a time more distant 96 

from transition to CLL (MBL-CLL 3 and 4), suggesting further evolution of the immune 97 

response over time with CLL progression. Effector memory CD8
+
 T cells, CD56

dim
 NK cells 98 

consistently showed more differentially expressed genes in both MBL and CLL versus HDs 99 

(Figure 2D right panel), which we also observed when re-analyzing these data as a pseudo-bulk 100 

analysis of the same data (Suppl Fig 2). Comparable shifts in immune cell expression profiles 101 

were observed in the evaluation of independent MBL (MBL1-3, T1) versus CLL (CLL1-7, T2), 102 

but only minimal differences were observed in non-progressing MBL (Figure 2E). While we 103 

acknowledge that the low number of replicates (n=2) does not provide sufficient power to detect 104 

the biological variability among HDs and that individual-specific variations might confound the 105 

observed differences between HDs and MBL/CLL samples, we minimized this risk by selecting 106 

age-matched HDs and applied uniform processing to all samples. 107 

 108 

To investigate which dysfunctional immune mechanisms may potentially impact CLL biology, 109 

we interrogated major molecular interactions between immune and normal B or CLL-B cells in 110 

HDs or patients, respectively, using CellPhoneDB v2.1.7 which predicts potential interactions 111 

between ligand–receptor pairs based on elevated expression in the corresponding cell-types
19

. In 112 

so doing, we observed an increased total number of potential interactions in subjects with MBL 113 

compared to HDs. This increase remained stable with progression to CLL and was evident across 114 

diverse immune cell types but most distinctly observed in monocytes (Figure 2F, left heatmap). 115 
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To examine the effects of B cell receptor (BCR) signaling inhibition with ibrutinib on the 116 

cellular interactions between immune and leukemia cells, we re-analyzed 4 additional scRNA-117 

seq samples previously generated from PBMCs before and during ibrutinib treatment (cells 118 

collected 30-240 days after treatment) from two patients with CLL
20,21

. We again observed that 119 

the number of cellular interactions in pre-treatment CLL samples was higher across immune cell 120 

types and especially in monocytes in both patients. Consistently, the number of interactions 121 

decreased after ibrutinib treatment to levels similarly observed in HDs (Figure 2F, right 122 

heatmaps). Most of the interactions upregulated in MBL/CLL patients involved inhibitory 123 

signals of immune cell function proceeding from CLL cells across to various immune cell types 124 

such as: BTLA/MIF-TNFRSF14 (HVEM, observed in MBL-CLL1, 3 and 4), CTLA4-CD86 125 

(observed in MBL-CLL4), and LGALS9-HAVCR2 (TIM3, observed in MBL-CLL1-4) (Figure 126 

2G, left panel and Suppl Fig 3). Notably, only a proportion of cancer cells express these 127 

inhibitory signals: BTLA (17.4%), MIF (41.6%), LGALS9 (18.2%), and CTLA4 (10.4%) (Suppl 128 

Fig 4). We observed that all these interactions were downregulated after ibrutinib treatment 129 

(Figure 2G, right panels). 130 

 131 

Altogether, we observed that the composition and state of immune cells was markedly different 132 

between HDs and MBL patients, while no major additional transcriptional changes manifested 133 

during natural progression from MBL to CLL. These observations suggest that the key drivers of 134 

transcriptional immune dysfunction in CLL may be present early during the course of the disease 135 

and are in keeping with the early transcriptomic, genomic and epigenetic changes already present 136 

in MBL as well as the known increased risk of infections even at the earliest stages of the 137 

disease
22

. Among the features that distinguished immune and leukemia cells interactions in 138 
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patients with CLL were an increased number of cellular interactions compared to HDs, 139 

especially within myeloid cells, that predominantly involved multiple inhibitory immune signals, 140 

and which were no longer detected after ibrutinib treatment. Thus, although T cell deficits in 141 

CLL have been well investigated
23,24

, the contribution of myeloid cells to inhibitory signals has 142 

been far less characterized and warrants further assessment. 143 

 144 
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 238 

FIGURE LEGENDS 239 

Figure 1. scRNAseq analysis of immune cells from non-progressive MBL patients and CLL 240 

patients. (A) Peripheral blood mononuclear cells from 2 serial samples were collected for 3 241 

MBL (red dots) and 7 CLL patients (purple dots). (B) Non-CD19
+
CD5

+ 
cells were isolated by 242 

fluorescence-activated cell sorting. Uniform manifold approximation and projection (UMAP) 243 

visualization of all immune cells. Cells are colored by immune cell type (top) and CLL or MBL 244 

assignment (bottom). (C) Proportion of immune cell types per time point in MBL and CLL 245 

patients. (D) Proportion of T cell types per time point in MBL and CLL patients. Cell 246 

percentages were calculated after averaging cell numbers from all samples. Abbreviations: DC, 247 

Dendritic cell; pDC, Plasmacytoid dendritic cell; Mono, Monocyte; T, T-cell; NK, Natural killer 248 

cell; ILC, Innate lymphoid cells; gdT, Gamma-delta T cells; MAIT, Mucosal associated invariant 249 

T cells; TCM, Central memory T cells; TEM, Effector memory T cells; CTL, Cytotoxic T cells; 250 

Treg, Regulatory T cells. 251 

Figure 2. scRNAseq analysis of immune cells from healthy donors and progressive disease 252 

from MBL to CLL. (A) scRNAseq was performed on PBMCs collected from 4 MBL patients 253 

(red dots) that progressed to CLL (purple dots), and from 2 healthy donors (blue dots). Symbol X 254 

indicates the time of diagnosis of CLL. (B) UMAP visualization of all immune cells colored by 255 

immune cell types (left) and by sample types (right). (C) Proportion of immune cell types (left) 256 

and T cell subtypes (right). (D) Number of significant differentially expressed genes for each cell 257 

type by performing comparison of paired samples within patients (left panel) or comparison 258 

between MBL samples or CLL samples versus healthy donors (right panel). Cells were 259 

https://www.nature.com/natcancer
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categorized based on lymphoid and myeloid cells. (E) Same analysis for significant differentially 260 

expressed genes was performed on 3 independent non-progressive MBL patients and 7 CLL 261 

patients (from Figure 1). (F) Heatmaps with the number of the significant ligand-receptor 262 

interactions for each cell type under different conditions using CellPhoneDB v2.1.7. Heatmap 263 

comparing the number of significant interactions between healthy donors and patient samples 264 

from either MBL stage or CLL stage (left). Heatmaps including samples before and after 265 

ibrutinib for two additional patients (right panels). Grey boxes indicate insufficient number of 266 

cells to perform interactome analysis. (G) Heatmaps representing the difference of p-values for 267 

each ligand-receptor pair regarding specific cell types (x-axis). Interactions that are enriched in 268 

patients (red) or enriched in healthy donors (blue) were calculated by subtracting -log10(p-value) in 269 

healthy donors from -log10(p-value) in patients (left panel). The same interactions that are either 270 

enriched (red) or depleted (blue) after ibrutinib (right panels) are calculated by subtracting -271 

log10(p-value) in pre-ibrutinib from -log10(p-value) in post-ibrutinib.  Abbreviations: HDs, Healthy 272 

donors; Pts, Patients; cell type abbreviations are the same as in Figure 1. 273 

 274 

 275 
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